

Nota Técnica N°5

Eficiencia Energética en Transformadores

El Protocolo de Kioto, introducido inicialmente en el año 1997, busca reducir las emisiones de Gases de Efecto Invernadero, las cuales representan una de las causas del calentamiento global. Si bien este protocolo fue establecido en 1997, su entrada en vigor fue recién a partir del año 2005.

En el mismo se busca poner en práctica lo acordado en la convención macro de las Naciones Unidas sobre el "Cambio Climático". En este caso, los 38 países más industrializados y la unión europea se comprometen a reducir las emisiones de gases de efecto invernadero, las cuales son una de las causas más importantes del calentamiento global.

Los principales Gases de Efecto Invernadero son:

- Dióxido de Carbono.
- Metano.
- Óxido Nitroso.
- Hidrofluorocarbonos.
- Perfluorocarbonos.
- Hexafluoruro de Azufre.

De todos los nombrados, el dióxido de carbono (CO2) es por lejos el más abundante y el que más ha crecido desde la revolución industrial. El mismo es obtenido por la quema de combustibles fósiles en actividades energéticas (refinerías, coquerías e instalaciones de combustión), como así también en producción y transformación de metales férreos, industrias minerales (cemento, vidrio y cerámica) y fabricación de papel y pasta de papel.

Centrándose en este protocolo y buscando reducir la emisión de CO2 al ambiente, la comunidad europea estableció en el año 2009 la directiva 2009/125/CE. En una primera instancia, la misma se basaba en la eficiencia energética en centrales eléctricas, pero luego fue expandida a productos relacionados con la energía, donde introduce a los transformadores.

En conformidad con esta directiva, se realizó el reglamento UE 548/2014, donde en base a los estudios realizados por la comisión europea, se establecieron los nuevos lineamientos de diseño ecológico que deben adoptar los transformadores.

El objeto de esta normativa es la de mejorar el rendimiento de los equipos, produciendo un mayor ahorro de energía, y por ende reducir la emisión de Gases de Efecto Invernadero (CO2), debido a un mejor aprovechamiento de la energía generada.

Este mejoramiento en la eficiencia de los transformadores consta de 2 etapas; la primera etapa desde Julio de 2015 y la segunda desde Julio de 2021.

Para el caso de los transformadores secos de mediana potencia, la primera de las etapas reduce las pérdidas en vacío en aproximadamente 30%, y en 10% las pérdidas debidas a la carga. En cuanto a la segunda etapa, la reducción de pérdidas en vacío es

de otro 10%, y las debidas a la carga en algunos casos es de 12% (respecto de la etapa anterior).

A continuación, se presenta el cuadro de valores establecido en la normativa UE/548 para transformadores secos de mediana potencia.

	1 ^a Etapa (Julio 2015)		2ª Etapa (Julio 2021)	
Potencia Asignada	Pérdidas Máximas		Pérdidas Máximas	
	Carga	Vacío	Carga	Vacío
kVA	W	W	W	W
50	1700	200	1500	180
100	2050	280	1800	252
160	2900	400	2600	360
250	3800	520	3400	468
400	5500	750	4500	675
630	7600	1100	7100	990
800	8000	1300	8000	1170
1000	9000	1550	9000	1395
1250	11000	1800	11000	1620
1600	13000	2200	13000	1980
2000	16000	2600	16000	2340
2500	19000	3100	19000	2790
3150	22000	3800	22000	3420

Con el objetivo de cumplir con estos nuevos desafíos, buscando ser más responsable en el cuidado del ambiente y conforme a los lineamientos establecidos en la normativa vigente para la primera etapa de implementación, CAT MIRON ha lanzado al mercado su nueva línea de Transformadores "Eco CAT". Esto se logró gracias a un proceso de mejora continua en el diseño y fabricación de sus productos, acompañados por una búsqueda constante de mejores materias primas.

Con esta nueva línea de transformadores "Eco CAT" (ya disponibles en el mercado) se logra reducir las pérdidas respecto de los transformadores estandarizados (Norma IRAM 2277) en:

Nivel de Aislación 17,5kV				
Potencia	Reducción de Pérdidas			
	Vacío Carga Tota		ales	
kVA	W	W	W	%
100	160	20	180	7,2
125	180	10	190	6,8
160	230	-140	90	2,7
200	270	30	300	7,6
250	340	-5	335	7,2
315	380	220	600	10,7
400	450	20	470	7,0
500	500	375	875	11,0
630	550	335	885	9,2
800	700	1430	2130	18,6
1000	750	2040	2790	20,9
1250	1000	2340	3340	20,7
1600	900	3100	4000	20,8
2000	1350	3205	4555	19,7
2500	1400	2850	4250	16,1
3150	1700	4450	6150	19,2

La comparación en la tabla anterior está efectuada en base a las pérdidas de los transformadores estandarizados en IRAM 2277 respecto de los lineamientos Eco CAT (UE/548), para transformadores reductores de relación 13,2/0,4kV.

Con las reducciones de pérdidas en los transformadores no sólo se logra reducir la emisión de CO2 al ambiente, sino que también se obtiene una disminución importante en los costos de explotación.

Los costos de explotación en el servicio vinculados a los transformadores dependen exclusivamente de las pérdidas de energía que el transformador genera.

Estas pérdidas se dividen en 2 grupos:

Pérdidas en vacío; las mismas son dependientes de la inducción magnética del núcleo de Hierro, y de sus características físicas y constructivas. Dichas pérdidas estarán presentes en todo momento que el transformador esté conectado a la red. Y su valor para un equipo ya construido solo se modificará si se modifica la inducción magnética, es decir, si el transformador está alimentado a una tensión o frecuencia diferente a la de diseño. Tener en cuenta que no es recomendable que un transformador esté alimentado con una tensión o frecuencia diferente a los valores nominales, y que los pequeños desvíos que pueden aparecer en ellos, son del orden máximo de 5%; las desviaciones del valor de tensión nominal admisible, se encuentran estipulados en las respectivas normas de fabricación.

Pérdidas en carga (o de cortocircuito); estas son las pérdidas que se presentan cuando por los bobinados circula corriente a causa de estar alimentando una carga en el circuito secundario. El valor que se obtiene es función cuadrática del estado de carga del transformador, es decir que a carga plena, estarán presentes las pérdidas máximas garantizadas, pero cuando el estado de carga sea del 50%, las pérdidas de cortocircuito se reducen a un 25% del valor máximo. Si bien en las mediciones en laboratorio estas pérdidas se pueden individualizar, en la práctica, las mismas estarán sumándose a las pérdidas de vacío.

Por lo expresado en los puntos anteriores, se entiende que el ahorro del costo de energía se puede evaluar en varias situaciones diferentes, dependiendo del estado de carga del transformador a evaluar.

A continuación, se da a modo de ejemplo para 4 casos diferentes la reducción del consumo de energía en un transformador de 1000kVA de potencia de 13,2kV/0,4kV Eco CAT, respecto del mismo, pero con las pérdidas indicadas según la normativa IRAM 2277.

Caso 1: Transformador conectado a la red sin entregar energía al secundario (transformador en vacío).

Ahorro de Energía			
Diario	Mensual %		
kWh			
18	540	33	

Caso 2: Transformador con demanda de energía al 50% durante 18hs y 80% 6hs.

Ahorro de Energía				
Diario	Mensual	ensual %		
kV	,,			
34	1014	24		

Caso 3: Transformador con demanda de energía al 80% durante 18hs y 100% 6hs.

Ahorro de Energía			
Diario	Mensual %		
kWh		,,	
51	1520	22	

Caso 4: Transformador con demanda de energía al 100% durante 24hs.

Ahorro de Energía			
Diario	Diario Mensual %		
kWh			
67	2009	21	

La eficiencia energética no sólo conlleva a la responsabilidad en el uso y consumo de la energía, en ser más responsables en el cuidado del ambiente y en la disminución de gases de efecto invernadero (CO2); sino que también permite un ahorro significativo en los costos de explotación de la energía eléctrica.

Para más información, te invitamos a enviarnos un mail a info@miron.com.ar

